Previous chapter: may fields interact w/ moving charges

$$
\vec{F}=q \vec{v} \times \vec{B}
$$

Currents: moving changes $\therefore \vec{B}$ interacts w/ currents

$$
\vec{F}=I \vec{L} \times \vec{B}
$$

1820 Hans Oersted showed that currents generate
B-Gelds that move compass needles
\Rightarrow this was probably II thing to connect
electricity w/ magnetism \Rightarrow eletromaguetism
so if currents of moving charges generates B fields then a single change must geneate field

$$
\begin{gathered}
\vec{B}(r)=\frac{\mu_{0}}{4 \pi} q \frac{q \vec{v} \times \hat{r}}{r^{2}} \\
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} / \mathrm{A} \quad \text { tesla } / \mathrm{amp}
\end{gathered}
$$

\vec{v} velocity of moving change of
r distance from q to point of B field
\hat{r} unit direction form $\&$ to $" r *$ "

change moving info page
\vec{B} is \perp to \vec{v} § $\vec{\sigma}$ so is tangential to circle around \vec{v} direction

Field due to cursent in wive
each charge in current generates \vec{B}

$$
\stackrel{B}{B}_{\text {tot }}=\sum_{i=1}^{\text {changes }} \vec{B}_{i} \Rightarrow \int d \vec{B}
$$

write $d \vec{B}=\frac{\mu_{0}}{4 \pi} d q \frac{\vec{v} \times \hat{r}}{r^{2}} \quad d \hat{f}=$ ting bit of charge

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{L}}{d t} \text { and } d g \vec{v}=d q \cdot \frac{d \vec{L}}{d t}=\frac{d \vec{t}}{d t} d \vec{L}=I d \vec{L} \\
\text { so } d \vec{B} & =\frac{\mu_{0}}{4 \pi} I \frac{d \vec{L} x \hat{r}}{r^{2}} \quad \text { Bot. Savant Law }
\end{aligned}
$$

interact over wise
ex: \vec{B} from straight wive

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{L} \times \hat{r}}{r^{2}} \quad d \vec{L} \times \hat{r}=d L \sin \theta \quad \dot{k} d l=d y
$$

note $\theta+\phi=90^{\circ} \therefore \sin \theta=\cos \phi$
and $\cos \phi=x / r$ or $r=x / \cos \phi=x \sec \phi$
also $\tan \phi=y / x$ so $d y=x \sec ^{2} \phi d \phi$
Hans form integral to

$$
\frac{N_{0}}{4 \pi} I \frac{\left(x \sec ^{2} \phi d \phi\right) \cdot \cos \phi}{x_{0} \sec ^{2} \phi}
$$

$B=\int_{-\phi_{0}}^{\phi_{0}} \frac{\mu_{0} I}{4 \pi x} \cos \phi d \phi \quad x^{2} \sec ^{3} \phi \quad$ where $\tan \phi_{0}=\frac{a}{x}$

$$
=\left.\frac{\mu_{0} I}{4 \pi x} \sin \phi\right|_{-\phi_{0}} ^{\phi_{0}}=\frac{\mu_{0} I}{2 \pi x} \sin \phi_{0}
$$

$$
\begin{aligned}
& \sin \phi_{0}=\frac{a}{\sqrt{a^{2}+x^{2}}} \\
& B=\frac{\mu_{0} I}{2 \pi} \frac{a}{x \sqrt{a^{2}+x^{2}}}
\end{aligned}
$$

now take limit as $a \rightarrow d$ wire becomes "infinite"

$$
\begin{aligned}
\frac{a}{\sqrt{a^{2}+x^{2}}} & \rightarrow 1 \text { so } B \rightarrow \frac{\mu_{0} I}{2 \pi x} \\
& \\
& \\
& x=\frac{\mu_{0} I}{2 \pi x} \quad x=\text { dist (com wive }
\end{aligned}
$$

Rules for getting B-field for current in wive

1. magnitude $f B$ is $B=\frac{\mu_{0} I}{2 \pi r}$

$$
r=\text { distance (com wire }
$$

2. B loops around wire
3. use RHE \rightarrow thumb along current, fingers point along B

Force on 2 wires carrying current

wire I. makes \vec{B}_{1} field at wire 2

$$
B_{1}(r)=\frac{\mu_{0} I}{2 \pi r}
$$

by RHF $B_{1}(r)$ is into page

$\stackrel{\rightharpoonup}{F}_{2}=$ force on wive 2 from B for wive 1
$\vec{F}_{2}=I_{2} \vec{L}_{2} \times \vec{B}_{1} \Rightarrow F_{2}$ is up towards wire I

$$
E_{2}=I_{2} L_{2} B_{1}=I_{2} L_{2} \frac{\mu_{0} I_{1}}{2 \pi r}=L_{2} \frac{\mu_{0} I_{1} I_{2}}{2 \pi r}
$$

force per length $\frac{F_{2}}{L_{2}}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi r}$

13 field hoo cirentar current loop

B_{1} cancels out by symmetry

$$
d B_{11}=\frac{\mu_{0} I}{4 \pi} \frac{d l \sin \theta}{x^{2}+a^{2}}
$$

integrate around loop \rightarrow everything is constant.

$$
\begin{aligned}
B_{11} & =\int \frac{k_{0} I}{4 \pi} \frac{\sin \theta}{x^{2}+a^{2}} d l \\
& =\frac{k_{0} I}{4 \pi} \frac{\sin \theta}{x^{2}+a^{2}} \int d l \\
& \sin \theta=\frac{a}{\sqrt{x^{2}+a^{2}}}
\end{aligned}
$$

so $B=\frac{\mu_{0} I \frac{a^{2}}{2\left(x^{2}+a^{2}\right)^{3 / 2}}}{}$ along axis note: coar center, $x<c a, B=\frac{\mu_{-} I}{2 a}$ constant!
if we have a coil w / N tums, eccl one confibutes

$$
\Rightarrow B_{t t}=N B_{1}=\frac{\operatorname{roN} I a^{2}}{\left(x^{2}+a^{2}\right)^{3 / 2}}
$$

use RHR \rightarrow curl fingers along I, B points in div of thumb away
this is called a "dipole"

Backs to B from inforitt wire

$B=\frac{\mu_{0} I}{2 \pi r}$ circling around wire using RHR
note: $2 \pi r=$ circumference of circle $w /$ reading r
so $B \cdot 2 \pi R=\mu_{0} I$
if we draw an imaginary circle around the wire then P^{C} is the current inside the circle
B is constant in magnitude but not direction

in calculus we can integrate around a Closed path
\Rightarrow de \int in $d \vec{l}=$ differential length, direction is along fath

then $\oint \vec{B} \cdot d \vec{l}$ is integral of \vec{B} around path
for long wore $\oint \vec{B} \cdot d \vec{l}=\vec{B} \cdot \oint d \vec{l}$
\Rightarrow Since \bar{B} is parallel to $d \vec{l}$:

$$
\vec{B} \cdot \oint d \vec{l}=B \oint d l=B \cdot 2 \pi r
$$

and $\quad I=$ current inside loop

$$
\oint_{\text {rath }} \vec{B} \cdot d \vec{l}=\mu_{0} \vec{T}_{\substack{\text { inside } \\ \text { gath }}}
$$

cloned path
this is Ampere's kew and is tune in general!
ex:

- dean any closed path around wire
- integrate \vec{B} around that path

$$
\oint_{\text {path }} \overrightarrow{\vec{B}} \cdot d \vec{l}=\mu_{0} I_{\text {inside }}=\mu_{0} I
$$

But that's not use [ul really). Ampere's law is most use u ul when B is constant along path so that

$$
\oint_{\text {path }} \stackrel{\rightharpoonup}{B} \cdot d \vec{l}=\vec{B} \cdot{\underset{p}{p a t h ~ l e u g t h ~}}^{\text {path er }}
$$

ex: what is \vec{B} inside a wire?
ex: B inside conductor

current density $J=I / \pi R^{2}=$ constant now draw loop with radius $r<R$ inside wire
\Rightarrow we expect \bar{B} is also constant at constant r_{1} and points along circle just like for $r>R$
\Rightarrow current inside loops $B(r)=J \cdot \pi r^{2}$
so $\quad \oint \vec{B} \cdot d \vec{l}=B \cdot 2 \pi r=\mu_{0} I(r)=\mu_{0} J \pi r^{2}$

$$
\begin{aligned}
& J=I / \pi R^{2} s_{0} \\
& B \cdot 2 \pi r=\mu_{0} I \frac{r^{2}}{R^{2}} \\
& B=\frac{\mu_{0} I r}{2 \pi R^{2}}
\end{aligned}
$$

when $r=R, B=\frac{\mu_{0} T}{2 \pi R}$

Solenoid: loops of wire, cylindaical

\Rightarrow each "turn" of wire is a current loop that generates a B-field
$\Rightarrow \vec{B}$ from each loop adds as a vector

Solenoid direction ament in the coil $\otimes \otimes(\otimes) \times(x)$ current into page 0000000 current out of page can think if solenoid as having N coils near counter of ear loop $B=$ const so net \vec{B} in a solenoid is constant down axis

- can show that B is re constant inside
- " " \quad " is ~ 0 outside coil

Find B inside solenoid:
$\theta \theta \theta \theta \theta \theta \theta$ current into page
B from each leoil: (X) by RHR
B
invent path like this
outside coil

we Ampere's law: $\oint \bar{B} \cdot d \bar{l}=\mu_{0} I_{\text {in }}$

$$
I_{i n}=N I
$$

- along vertical legs $\vec{B} \perp d \vec{l}$ so $\vec{B} \cdot d \vec{l}=0$
- along horizontal leg inside coil:

$$
\begin{aligned}
& \int \vec{B} \cdot d \vec{l}=B \cdot L=\mu_{0} N B \\
& \text { so } B=\mu_{0} \frac{N}{2} I
\end{aligned}
$$

let $u=\frac{N}{2}$ for fall solenoid
then $B=$ mon I inside
node : opposite side of coil has same current of come
$\Rightarrow B$ is from entire loops!
outside col, B porn each side will lance l
so B~O outride coil
$B=\mu_{0} n B$ inside coil w/current I

2 wires wlequal \& opposite currents I separated by distance d
©
$\longleftarrow d \longrightarrow$
Calculate \vec{B} (dir e magnitude at position P that forms isosceles Kioungle

\Rightarrow field doe to right current adds as vecto to field due to left current
\Rightarrow components pointing up will add
\Rightarrow " "eft ${ }^{\text {a right will cancel }}$

$$
B_{r}=\frac{\mu_{0} I}{2 \pi r} \quad B_{u p}=B_{r} \cos 60^{\circ}=\frac{B_{r}}{2}
$$

total $\mathrm{Bup}_{\mathrm{B}} \Rightarrow$ contibutions foom Br à Be

$$
B_{\text {tot }}=2 B_{u p}=B_{r}=\frac{\mu_{0} I}{2 \pi d}
$$

